If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2-30=0
a = 1.5; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·1.5·(-30)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1.5}=\frac{0-6\sqrt{5}}{3} =-\frac{6\sqrt{5}}{3} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1.5}=\frac{0+6\sqrt{5}}{3} =\frac{6\sqrt{5}}{3} =2\sqrt{5} $
| 9d+16=106 | | 20n+4=n | | (9^x)-(12^x)=-3 | | 10m+30=140 | | 2.5+7.75=4+3.75d | | 9t+150=249 | | 4d+15=55 | | 5c+30=100 | | (x-0.1)^2=0.36 | | 18x+2=10x+10 | | 2+14x=15x-5 | | 10+10x=9x+21 | | 3a+1=50 | | 105=8x+3 | | 9t+50=158 | | 17+w=23 | | 4x+9-2=27 | | 9m+25=79 | | 20x-8+2=23 | | 20-x+5/3=30 | | 4x-13=x-12=90 | | 5x-3+13x=8-2x+4 | | 2y/5-1=7 | | 3x+18=2x+17=180 | | 5x+19)+4x-13)+2x-13=180 | | 4v+3(v+5)=29 | | 675+15e+-19e2+e3=0 | | 3(x-6)+6x=18 | | 26=2y+4(y+2) | | -2u+5(u-3)=9 | | -8r+13=36 | | X+94=y |